(C) Elias Fizesan - Jonk Fuerscher

Dieser Schüler der European School of Luxembourg II wurde von der Jury des nationalen Wettbewerbs der jungen Wissenschaftler ausgezeichnet und bereitet sich gerade auf die Teilnahme am London International Youth Science Forum am Imperial College of London vor. Mit gerade 16 Jahren hat Elias Fizesan Gewächshäuser entwickelt, die in der Lage sind, die Bedürfnisse und häufigsten Krankheiten von Futterpflanzen zu erkennen und entsprechend zu reagieren. Mithilfe seines Experiments konnte er den für das Wachstum der getesteten Pflanzen erforderlichen Wasserverbrauch im Rahmen dieses umweltfreundliches Projekts um 59 % senken.

An der Reduzierung der Umweltauswirkungen teilnehmen

Im Hinblick auf die Veränderung der Welt wollte Elias mit seinen Möglichkeiten zur Entwicklung einer nachhaltigeren und erschwinglicheren Landwirtschaft beitragen. Er hatte die Idee, seine Programmierkenntnisse zu nutzen und künstliche Intelligenz (KI) zum Einsatz zu bringen, um unabhängige und intelligente Gewächshäuser zu entwickeln. Zunächst hat er sich über die Parameter informiert, die für die Optimierung des Pflanzenwachstums zu berücksichtigen sind und Temperatur, Bewässerung, Belüftung und Helligkeit ausgewählt. Diese Recherchen haben ihn jedoch noch weiter geführt. „Nachdem ich gelesen habe, dass Krankheitserreger und Parasiten den Wirkungsgrad der Kulturen zwischen 10 und 40 % reduzieren können, war dieser Aspekt für mich wichtig“, erklärt Elias. Folglich wollte er die KI für die Entwicklung eines Systems einsetzen, das in der Lage ist, etwa 15 häufige Pflanzenkrankheiten (z. B. Oidium) zu erkennen.

Intelligente Computermodelle entwickeln

Elias hat angefangen, über die Programmiersprache Python und die von Google für die Nutzung der KI gelieferten Quellcodes intelligente Systeme zu entwickeln. Was zum Beispiel die Belüftung angeht, ist sein System an einen Sensor geknüpft, der in einem Gewächshaus angebracht ist und alle 5 Minuten Informationen über die Temperatur und Feuchtigkeit sammelt. Sobald eine bestimmte Schwelle überschritten ist, wird der Lüfter aktiviert, um optimale Bedingungen wiederherstellen.

Um zu definieren, ab wann sich der Lüfter anschalten soll, hat Elias ein künstliches, neuronales Netzwerk entwickelt. Inspiriert von der Funktionsweise der Neuronen, löst dieses System komplexe Probleme, indem fortlaufend Anpassungen an mehrere Faktoren vorgenommen werden. So schaltet sich der Lüfter nicht nur je nach den Temperatur- und Feuchtigkeitswerten an, sondern berücksichtigt auch andere Parameter wie die aktuelle Wachstumsrate der Pflanze und das Vorhandensein oder Fehlen einer Krankheit.

Gleichzeitig hat Elias einen Algorithmus zur Erkennung von Pflanzenkrankheiten entwickelt. „Mit der KI muss ein Modell mit vielen Daten trainiert werden. Ich habe recherchiert und etwa 70.000 Bilder von Pflanzen benutzt, die diese Krankheiten aufweisen. Durch die Einspeisung der Bilder verbessert sich das Modell von selbst“, erklärt Elias. Er konnte eine Präzision des Modells von 97,3 % erreichen. Das Modell ist mit einer Kamera verbunden, die regelmäßig Fotos der Pflanze im Gewächshaus macht. Indem das System diese Fotos mit denen aus der Datenbank vergleicht, kann es erkennen, ob die Pflanze eine Krankheit hat oder nicht und um welche Krankheit es sich handelt. Es speichert dann die Daten und benachrichtigt den Benutzer der Krankheit.

Die Wirksamkeit der unabhängigen Gewächshäuser testen

Legende: Darstellung des unabhängigen Gewächshauses links und des kontrollierten Gewächshauses rechts.

Um die Wirksamkeit der Einrichtung zu testen, hat Elias einen Kopfsalat in seinem unabhängigen Gewächshaus und einen anderen in einem kontrollierten Gewächshaus wachsen lassen. Letzterer erhielt 150 ml Wasser pro Tag und litt nur unter den wetterbedingten Temperatur- und Helligkeitsänderungen. „Um sicher zu sein, zuverlässige Ergebnisse zu erhalten, habe ich das Experiment dreimal wiederholt und dann festgestellt, dass der Kopfsalat mit einem Durchmesser von etwa 12,5 cm voll ausgewachsen war“,fügt Elias hinzu. Im Durchschnitt wuchs der Kopfsalat 49 Tage im kontrollierten Gewächshaus im Vergleich zu 27 Tagen im unabhängigen Gewächshaus. Mithilfe seines Systems konnte er den Wasserverbrauch um 59 % senken.

Elias möchte sein Projekt fortführen, um es so erschwinglich wie möglich zu machen. Seine Experimente werden jedoch in London fortgeführt, wo er seine Schullaufbahn beenden wird, bevor er sein Hochschulstudium in der Modellierung beginnt.

 

Autor: Constance Lausecker
Foto: © Elias Fizesan – Jonk Fuerscher

Ökologie Newtrap: eine neue automatisierte Methode zur Überwachung von Molchen

Forscher haben eine Fotofalle entwickelt, mit der eine unauffällige Überwachung von Molchen, einer wichtigen Gattung der...

FNR
Science Comics When will robots replace taxi drivers?

Twenty-two PhD candidates of the University of Luxembourg have joined forces to help future generations picture the oppo...

FNR Awards 2017 Ein Roboter, der Kindern mit Autismus hilft

"QT", ein Roboter als therapeutische Hilfe für autistische Kinder, der einfach niedlich ist.

Auch in dieser Rubrik

Ben Thuy Fossilien Meeresreptil
Science Days Digital Auf Tauchgang zu den Seemonstern aus dem Jura

Der Paläontologe Ben Thuy wird am 19. November für Schüler ab 10 Jahren live aus dem 'naturmusée' über die spannende Spurensuche nach Meeresreptilien-Fossilen berichten. Anmeldung erforderlich!

TEDxUniversityofLuxembourg banner
TEDx Event TEDxUniversity of Luxembourg 2020 - Tackling the Climate Crisis

The University of Luxembourg hosts its 3rd TEDx event on 12-16 October 2020 with talks and performances. Join it online - for FREE!

Videos on Energy Where does energy come from?

What is energy? Where does it come from? And will it last forever? Phillip Dale, researcher at the University of Luxembourg answers these questions on his personal YouTube channel “Energy Balance”.