Bassam Janji Gunnar Dittmar

LIH

Bassam Janji (links) und Gunnar Dittmar (rechts) vom Luxembourg Institute of Health

Drei Forscher erhielten heute den Nobelpreis für Medizin oder Physiologie für ihre Entdeckungen wie Zellen die Verfügbarkeit von Sauerstoff wahrnehmen und darauf reagieren – einer der wichtigsten Anpassungsprozesse von Lebewesen.

William G. Kaelin Jr., Sir Peter J. Ratcliffe und Gregg L. Semenza entdeckten “die molekulare Maschinerie, die als Reaktion auf unterschiedliche Sauerstoffmengen die Aktivität von Genen reguliert”, so die offizielle Pressemitteilung.

Dieser Prozess spielt eine wichtige Rolle für normale physiologische Funktionen, aber auch in verschiedenen Krankheiten wie z.B. Krebs.

Somit stellt er auch eine Möglichkeit für die Entwicklung neuer Therapien dar.

science.lu hat mit zwei Forschern vom Luxembourg Institute of Health (LIH) gesprochen, die ebenfalls an diesem Thema arbeiten.

Bassam Janji, Sie sind Krebsforscher und Leiter der Gruppe Tumor Immunotherapy and Microenvironment am LIH. Können Sie kurz erklären, welche Rolle die Entdeckungen der Nobelpreisträger im Kontext von Tumoren spielen?

BJ: In fast allen soliden Tumoren wachsen Krebszellen sehr schnell und erschaffen ein Umfeld mit wenig Sauerstoff innerhalb des Tumors (Forscher nennen diesen Zustand des Sauerstoffmangels “Hypoxie”). Anders als gesunde Zellen hören Krebszellen in diesem feindlichen, sauerstoffarmen Umfeld aber nicht auf zu wachsen. Im Gegenteil: sie wachsen weiter weil sie ihren Stoffwechsel anpassen können.

Gregg Semenza, einer der diesjährigen Nobelpreisträger, hat einen Proteinkomplex entdeckt, das eine wichtige Rolle in der Anpassung von Zellen an wechselnde Sauerstoffmengen spielt. Der Proteinkomplex heisst HIF, kurz für hypoxia-inducible factor. Dieser Proteinkomplex ist in Tumorzellen oft angereichert und steuert über 200 Gene, die diverse Funktionen in Zellen erfüllen. Dies erlaubt Tumorzellen, vor sämtlichen Formen der Krebstherapie “wegzulaufen”, zu überleben und sich weiter zu vermehren.

Woran forschen Sie?

BJ: Mein Team versucht Krebstherapien effizienter zu machen, entweder indem wir Hypoxie direkt ansteuern, oder Prozesse die durch Hypoxie hervorgerufen werden, wie z.B. Autophagie (das „Selbstauffressen“ von Zellen – ein Prozess, der unter Stressbedingungen einsetzt, um das Überleben des Organismus zu garantieren). Dann untersuchen wir den Impakt dieser neuen, gezielteren Therapien in Kombination mit Immuntherapie.  

Sind Sie zufrieden mit der Auswahl des Nobelpreiskomittees?

Allerdings, ich bin mehr als zufrieden. Neben Hypoxie (Nobelpreis 2019) geht es in der Arbeit meiner Forschungsgruppe um Autophagie und Immuntherapie gegen Krebs, zwei weitere Themengebiete die jeweils 2016 und 2018 bereits mit dem Medizin-Nobelpreis ausgezeichnet wurden.

Gunnar Dittmar, Sie sind Leiter der Quantitative Biology Forschungsgruppe am LIH und arbeiten unter anderem auch am Proteinkomplex HIF. Was denken Sie: ist der Nobelpreis gerechtfertigt?

GD: Die Entdeckungen stellen eine sehr wichtige Grundlage speziell für die Anpassung in Tumorzellen dar, in welchen das Wachstumsprogramm von normaler Sauerstoffkonzentration auf niedrigen Sauerstoff umgestellt wird. Wie bereits erwähnt erlaubt dies Tumorzellen, vor Anti-Krebs-Therapien “wegzulaufen”. Die Entdeckung ist also medizinisch äußerst relevant.

Ich denke, dass der Nobelpreis eine schöne Würdigung für diese wichtige Forschung ist.

Sie erinnern sich ganz besonders an die erste Publikation von Gregg Semenza.

GD: Ja, für mich persönlich ist die erste Publikation von Gregg Semenza eine wahnsinnig tolle Entdeckung. Ich kann mich noch gut erinnern, ich war damals als Post-doc auf einer Konferenz und er hat das vorgestellt und das war wirklich sehr beeindruckend.

Können Sie kurz erklären, worum es dabei ging?

GD: Es ging um den Abbau von HIF durch das sogenannte Ubiquitin-System, was mein Spezialgebiet ist. Ubiquitin ist ein kleines Protein, dass mithilfe von Enzymen an ein Zielprotein gekoppelt wird. Diese Kopplung bewirkt, dass das Zielprotein schneller abgebaut wird. 

Semenza zeigte, dass abhängig von der Sauerstoffmenge Veränderungen am HIF-Proteinkomplex vorgenommen werden, die dann wiederum von einem anderen Proteinkomplex (dem Von-Hippel-Lindau-Komplex) anerkannt werden, was dann zum Abbau von HIF führt.

Unter normalen Sauerstoffbedingungen wird HIF ständig abgebaut. Ist wenig Sauerstoff vorhanden, wird der Abbau blockiert und der HIF-Komplex aktiviert dann andere Gene, die das Überleben der Zelle gewährleisten sollen. 

Worum geht es bei Ihrer eigenen Forschung über HIF?

GD: Wir wollen besser verstehen, wie HIF in Zellen reguliert wird. Wir wollen neue Interaktionspartner von HIF identifizieren, ihre Interaktionen mit Hif1a (einer Untereinheit von HIF) verstehen und ihre Eigenschaften studieren. Das könnte dann neue Möglichkeiten ergeben, wie man in der Krebsbekämpfung eingreifen könnte.

Es gibt bereits Therapien, die HIF in Krebs blockieren. Die langfristige Anwendung unserer Forschung wären Kombinationstherapien bei denen neben HIF noch andere, bisher unbekannte Ziele blockiert werden. Diese Art von Therapien wären dann hoffentlich verträglicher.

Autor: Michèle Weber (FNR)
Photo: LIH

Für mehr Informationen, hier die komplette Pressemitteilung des Nobelpreiskomittees (auf Englisch).

Auch interessant

„Mind the Brain“ - Kunst trifft Wissenschaft 10 Riesenhirne um 10 Jahre biomedizinische Forschung in Luxemburg zu feiern

Mit der Ausstellung „Mind the Brain“ in der Hauptstadt feiert das Luxembourg Centre for Systems Biomedicine (LCSB) der U...

Science Comics Fighting cancer in the Luxembourg Institute of Health

Twenty-two PhD candidates of the University of Luxembourg have joined forces to help future generations picture the oppo...

Blutspende Wofür wird das Blut bei Transfusionen und in der Forschung verwendet?

Entdecke anlässlich des Weltblutspendetags, warum das Blut für den menschlichen Körper lebenswichtig ist und wie es dazu...

FNR

Auch in dieser Rubrik

FNR Awards 2019 Für ein Computermodell, dass Stammzellenforschern bei der Umwandlung von Zellen hilft

Das neue Computermodell hilft Forschern jene Gene zu identifizieren, die wichtig für die Umwandlung von einem Zelltyp in einen anderen sind.

frail old man and young man
Welt-Diabetes-Tag Zusammenhang zwischen Diabetes und Gebrechlichkeit bei älteren Menschen entdeckt

Ein Diabetiker über 60 ist im Durchschnitt gebrechlicher als ein gleich alter Nicht-Diabetiker. Das ergab eine internationale Studie von Forschern des Luxembourg Institute of Health (LIH).

LIH
Kläranlage
Drogen im Luxemburger Abwasser Monitoring des Drogenkonsums in Luxemburg mittels Abwasseranalysen

Um ein zusätzliches Instrument zur Überwachung des illegalen Drogenkonsums zu haben, wurden Proben aus der Petinger Kläranlage analysiert. Dabei ist der Nachweis von Crystal Meth etwas überraschend.

Visuomotorische Reaktionen
Visuomotorische Reaktionen im Tischtennis Reaktionsschnelligkeit: Das Gehirn macht den Unterschied

Tischtennisspieler müssen blitzschnell erkennen wohin der Ball fliegt, um entsprechend zu reagieren. Forscher identifizieren visuelle Prozesse im Gehirn als ausschlaggebend für schnelle Reaktionszeit