© Uwe Hentschel

Konstantin Notman ist Chef des Start-Up-Unternehmens OCSiAl

Das Unternehmen OCSiAl, das derzeit noch in angemieteten Räumen in Leudelange seinen Geschäftssitz hat, ist ein Unicorn (Einhorn). Als Unicorn werden in der Finanzwelt Unternehmen bezeichnet, deren Marktwert bereits vor dem Börsengang die Marke von einer Milliarde US-Dollar übersteigt. Dem vor gut zehn Jahren gegründeten Start-Up OCSiAl ist das im vergangenen Sommer gelungen. Der Erfolg ist gewaltig, das Produkt, dem dieser Erfolg zu verdanken ist, hingegen winzig klein. Genau genommen bewegt es sich im Nanobereich. Denn OCSiAl entwickelt und produziert Graphen-Nanoröhrchen. Und für Firmenchef Konstantin Notman ist die bisherige Entwicklung auf diesem Gebiet erst der Anfang. 

Konstantin, wofür steht OCSiAl?

Für Oxygen, Carbon, Silizium und Aluminium. Das sind bedeutende chemische Elemente und zudem die vier häufigsten in der Erdkruste. Und wir beschäftigen uns aktuell mit den besonderen Eigenschaften des Carbons, genauer genommen mit so genannten Graphen-Nanoröhrchen. Graphen ist eine Modifikation von Carbon beziehungsweise Kohlenstoff. Als unser Unternehmen vor gut zehn Jahren gegründet wurde, waren wir uns absolut sicher, dass es auf der ganzen Welt derzeit kein anderes Material gibt, dass die Materialwissenschaft so revolutioniert wie Graphen-Nanoröhrchen. 

Was ist so besonders an diesen Graphen-Nanoröhrchen?

Wir reden hier über ein Additiv, mit dessen Hilfe sich bereits bei geringster Dosierung die Eigenschaften von 70 bis 80 Prozent der Materialen, die uns umgeben, sensationell verbessern lassen. Und das gilt sowohl für mechanische und elektrische als auch für thermische Eigenschaften. 
 

OCSiAl produziert den Wekstoff in Pulverform

Graphen selbst ist eine zweidimensionale Struktur, eine Schicht, die nur ein Atom dick ist. Graphen-Nanoröhrchen sind Röhren aus dieser einwandigen Struktur, die durch Katalyse entstehen. In unserem Fall dient als Katalysator simples Eisen in atomarer Form. Es kommen also keine gefährlichen oder giftigen Stoffe zum Einsatz. Die Röhrchen werden bis zu fünf Nanometer lang und haben einen Durchmesser von lediglich 1,6 Nanometern. 

Und was bewirkt das in anderen Materialien?

Aus dem zweidimensionalen Graphen wird durch die Entstehung der Röhrchen eine dreidimensionale Struktur. Und innerhalb anderer Materialen wie beispielsweise Polyamid hat es eine leitende und auch eine verstärkende Wirkung. Es ist vergleichbar mit einer stabilen Stahl-Armierung, nur eben auf Nanoebene. Zudem sind die Graphen-Nanoröhrchen um ein Vielfaches belastbarer, langlebiger und gleichzeitig auch leichter als Stahl. 

Dank seiner antistatischen Eigenschaften wird es aber auch in Fußböden für den klinischen Bereich verwendet. Es gibt aufgrund der Vielfalt an Merkmalen unzählige Einsatzmöglichkeiten, die von der Verbesserung der Reifenhaftung bis hin zur Steigerung der Effizienz von Elektrofahrzeugen reichen.

Welche Aufgabe hat OCSiAl dabei?

Was wir machen: Wir haben einen Herstellungsprozess für diese Nanoröhrchen entwickelt, mit dem wir den Werkstoff in Pulverform in großen Mengen und zu deutlich günstigeren Preisen produzieren können, als das bislang der Fall war. Unser eigentlicher Forschungshauptstandort ist im russischen Novosibirsk. Derzeit sind wir aber dabei, in Differdange eine große Forschungs- und Entwicklungseinrichtung samt Produktionsstätte zu errichten. Wir hoffen, mit dem Bau im Sommer beginnen zu können. 

Der optimale Einsatz den Graphen-Nanoröhrchen erfordert einen hohen Forschungsaufwand

Wie wird das Graphen den Werkstoffen beigefügt? 

Mit der Herstellung der Graphen-Nanoröhrchen zu günstigen Preisen allein ist es nicht getan. Wir forschen, entwickeln und produzieren deshalb schon eine Stufe weiter. Denn in der Regel können Graphen-Röhrchen nicht direkt in das Material eingemischt werden, um die gewünschten Eigenschaften zu erhalten.

Es ist also nicht wie eine Prise Salz oder Pfeffer, die man einfach nur hinzustreut?

Nein, keineswegs. Bereits geringste Mengen führen zu gewaltigen Veränderungen der Haupteigenschaften. Die große Herausforderung besteht also darin, die winzig kleinen Nanoröhrchen in den Werkstoffen wie beispielsweise Polymeren so zu verteilen, dass sie dort ihrer Wirkung entfalten. Und diese Wirkung muss in jedem einzelnen Partikel dieses Werkstoffs vorhanden sein. Das exakt für jedes Material hinzubekommen, erfordert einen enormen Forschungsaufwand. Wir produzieren also nicht nur Graphen-Nanoröhrchen, sondern entwickeln sie auch für den jeweiligen Einsatzbereich und arbeiten dabei mit Forschungsabteilungen weltweit zusammen.

Für unsere Kunden, zu denen globale Automobilhersteller, führende Elektronikhersteller und große Chemieunternehmen zählen, hat das den Vorteil, dass sie ihre Technologien nicht ändern müssen. Denn wir liefern ihnen ein maßgeschneidertes Produkt in Form eines vorgefertigten Konzentrats. Und das wiederum lässt sich dann einfach mit den anderen Stoffen vermischen. 

Interview: Uwe Hentschel

Fotos: Uwe Hentschel, OCSiAl

LIST TechDay 2019 Plattform für Zukunftstechnologien und die Unternehmen von morgen

Dinge auf dem Display nicht nur sehen, sondern auch fühlen. Wie das funktioniert, wird beim LIST TechDay gezeigt. Dort p...

FNR PEARL Chair Jens Kreisel Neue, intelligente Materialien durch Kombination von zwei physikalischen Eigenschaften

Die Materialien, an den Jens Kreisel und sein Team arbeiten, verwandeln eine Form von Energie in eine andere. Entdecke d...

Material mit viel Potenzial Flüssigkristallschalen ermöglichen innovativen Einsatz bei autonomen Fahren, Robotik und Sensortechnik

Wissenschaftler aus Luxemburg haben das Potenzial von Flüssigkristallschalen untersucht – ein Werkstoff, der viele zuku...

Auch in dieser Rubrik

OCSiAl Wissenschaftler
Wettbewerb für Forscher Graphen-Nanoröhrchen: Suche nach der besten industriellen Anwendung

Die luxemburgische Start-Up OCSiAl appelliert an Wissenschaftler weltweit sich für die jährlichen internationalen TUBALL Awards einzuschreiben.

Alte Hochöfen in Belval
Simulationsmodell XDEM Informationen über Vorgänge im Inneren eines Hochofens

Vorgänge im Hochofen kann man aufgrund der schweren Zugänglichkeit nur sehr schwer messen, mit Hilfe des Rechenmodells XDEM aber sehr genau beschreiben.

Angewandte Forschung Wie stellt man den perfekten Reifen her?

Beatriz Basterra Beroiz hat für ihre Doktorarbeit bei der Firma Goodyear geforscht um die perfekten Eigenschaften von Gummireifen herauszufinden

Nanomaschinen
Nanotechnologie Thermodynamik auf der Mikroebene

Im Rahmen einer Forschungsarbeit an der Uni Luxemburg wird untersucht, wie Schwärme von Nanomaschinen die Effizienz von Maschinen steigern könnten.