Phillip Dale

© Universität Luxemburg

Phillip Dale der Universität Luxemburg

Photovoltaik-Solarmodule erzeugen Elektrizität mit Hilfe von Sonnenlicht. Die Paneele absorbieren einfallendes Licht, das Elektronen anregt, sich in eine vorgegebene Richtung zu bewegen, was elektrischen Strom erzeugt, der Motoren antreiben oder Glühbirnen zum Leuchten bringen kann. Dies erfolgt über das Zusammenwirken von mehreren Halbleiterschichten und Metallen im Solarpanel.

Die Solarzellen werden in einem aufwendigen Prozess hergestellt, bei dem verschiedene Chemikalien, meist durch eine Verdunstungstechnik, auf einen Glasträger aufgetragen werden. Dadurch „wächst“ eine Solarzelle Schicht für Schicht.

Einsatz von Natrium beeinflusst den Prozess

In der Vergangenheit haben Wissenschaftler zufällig entdeckt, dass sich die Effizienz bei einer bestimmten Art von Solarzellen stark erhöht, wenn der lichtabsorbierenden Schicht Natrium hinzugefügt wird. Gleichzeitig beobachteten sie, dass Natrium das Wachstum dieser Schicht und das Zusammenwirken der anderen Chemikalien beeinflusst, indem es die Vermischung von Gallium und Indium verlangsamt.

Dies führt zu weniger homogenen Schichten, was wiederum die Ergebnisse beeinträchtigt. Bisher glaubten Wissenschaftler und Hersteller daher, der optimale Fertigungsablauf für Solarzellen wäre, Natrium erst hinzuzufügen, wenn der Wachstumsprozess beendet ist.

Forscher der Physics and Materials Science Research Unit an der Universität Luxemburg wählten einen anderen Ansatz und konnten zusammen mit vier internationalen Partnern nun zeigen, dass die Wirklichkeit differenzierter ist. Während normalerweise die lichtabsorbierende Schicht aus Tausenden verschiedener Kristallen zusammengesetzt ist, entschied sich die Forschungsgruppe für eine anspruchsvollere Herstellungsmethode und legte die Schicht mit lediglich einem einzigen großen Kristall an.

Mikroskopische Aufnahme des aus einem Kristall hergestellten Solarzellenabsorbers (schwarzweiß) und zugehörige chemische Analyse, die die Konzentration von Gallium (orange) und Indium (violett) zeigt.

Herstellung von Solarzellen überdenken

„Im Grunde zeigen wir mit dieser Forschungsarbeit, dass, wenn der Absorber aus nur einem Kristall hergestellt wird, es ausreicht, eine kleine Menge Natrium hinzuzufügen, um die Verteilung der Elemente zu homogenisieren“, sagt Diego Colombara, inzwischen Marie Curie Research Fellow am International Iberian Nanotechnology Laboratory und Projektleiter der Studie. „Das ist wirklich überraschend, denn mehr als 20 Jahre vorangegangener Forschung zeigten durchgängig den entgegengesetzten Effekt bei Absorbern, die aus vielen Kristallen hergestellt sind.“

Die Forscher schließen daraus, dass Natrium eine zweifache Wirkung hat: Es homogenisiert die Elemente in jedem Kristall, aber es verlangsamt die Homogenisierung bei Wechselwirkung zwischen den Körnern. „Dies ermöglicht uns zu überdenken, wie wir Solarzellen herstellen. Diese Erkenntnisse könnten zu künftigen Verbesserungen im Herstellungsprozess führen“, so Dr. Phillip Dale, Leiter der Forschungsgruppe am Laboratory for Energy Materials (LEM) an der Universität Luxemburg und Attract Fellow des FNR. Die Physiker veröffentlichten ihre Forschungsergebnisse in der angesehenen Fachzeitschrift Nature Communications.

Foto © Universität Luxemburg
Illustration 
© Universität Luxemburg

LIST TechDay 2019 Plattform für Zukunftstechnologien und die Unternehmen von morgen

Dinge auf dem Display nicht nur sehen, sondern auch fühlen. Wie das funktioniert, wird beim LIST TechDay gezeigt. Dort p...

FNR PEARL Chair Jens Kreisel Neue, intelligente Materialien durch Kombination von zwei physikalischen Eigenschaften

Die Materialien, an den Jens Kreisel und sein Team arbeiten, verwandeln eine Form von Energie in eine andere. Entdecke d...

Material mit viel Potenzial Flüssigkristallschalen ermöglichen innovativen Einsatz bei autonomen Fahren, Robotik und Sensortechnik

Wissenschaftler aus Luxemburg haben das Potenzial von Flüssigkristallschalen untersucht – ein Werkstoff, der viele zuku...

Auch in dieser Rubrik

Alte Hochöfen in Belval
Simulationsmodell XDEM Informationen über Vorgänge im Inneren eines Hochofens

Vorgänge im Hochofen kann man aufgrund der schweren Zugänglichkeit nur sehr schwer messen, mit Hilfe des Rechenmodells XDEM aber sehr genau beschreiben.

Angewandte Forschung Wie stellt man den perfekten Reifen her?

Beatriz Basterra Beroiz hat für ihre Doktorarbeit bei der Firma Goodyear geforscht um die perfekten Eigenschaften von Gummireifen herauszufinden

Nanomaschinen
Nanotechnologie Thermodynamik auf der Mikroebene

Im Rahmen einer Forschungsarbeit an der Uni Luxemburg wird untersucht, wie Schwärme von Nanomaschinen die Effizienz von Maschinen steigern könnten.

Luxembourg 2060 So werden Luxemburgs Städte zukunftsfähig

Smartphone. Smartwatch. Smarthome. Alles scheint smarter zu werden. Am Luxemburg Institute of Science and Technology (LIST) ersinnt Sylvain Kubicki die “Smartcity”.