Phillip Dale

© Universität Luxemburg

Phillip Dale der Universität Luxemburg

Photovoltaik-Solarmodule erzeugen Elektrizität mit Hilfe von Sonnenlicht. Die Paneele absorbieren einfallendes Licht, das Elektronen anregt, sich in eine vorgegebene Richtung zu bewegen, was elektrischen Strom erzeugt, der Motoren antreiben oder Glühbirnen zum Leuchten bringen kann. Dies erfolgt über das Zusammenwirken von mehreren Halbleiterschichten und Metallen im Solarpanel.

Die Solarzellen werden in einem aufwendigen Prozess hergestellt, bei dem verschiedene Chemikalien, meist durch eine Verdunstungstechnik, auf einen Glasträger aufgetragen werden. Dadurch „wächst“ eine Solarzelle Schicht für Schicht.

Einsatz von Natrium beeinflusst den Prozess

In der Vergangenheit haben Wissenschaftler zufällig entdeckt, dass sich die Effizienz bei einer bestimmten Art von Solarzellen stark erhöht, wenn der lichtabsorbierenden Schicht Natrium hinzugefügt wird. Gleichzeitig beobachteten sie, dass Natrium das Wachstum dieser Schicht und das Zusammenwirken der anderen Chemikalien beeinflusst, indem es die Vermischung von Gallium und Indium verlangsamt.

Dies führt zu weniger homogenen Schichten, was wiederum die Ergebnisse beeinträchtigt. Bisher glaubten Wissenschaftler und Hersteller daher, der optimale Fertigungsablauf für Solarzellen wäre, Natrium erst hinzuzufügen, wenn der Wachstumsprozess beendet ist.

Forscher der Physics and Materials Science Research Unit an der Universität Luxemburg wählten einen anderen Ansatz und konnten zusammen mit vier internationalen Partnern nun zeigen, dass die Wirklichkeit differenzierter ist. Während normalerweise die lichtabsorbierende Schicht aus Tausenden verschiedener Kristallen zusammengesetzt ist, entschied sich die Forschungsgruppe für eine anspruchsvollere Herstellungsmethode und legte die Schicht mit lediglich einem einzigen großen Kristall an.

Mikroskopische Aufnahme des aus einem Kristall hergestellten Solarzellenabsorbers (schwarzweiß) und zugehörige chemische Analyse, die die Konzentration von Gallium (orange) und Indium (violett) zeigt.

Herstellung von Solarzellen überdenken

„Im Grunde zeigen wir mit dieser Forschungsarbeit, dass, wenn der Absorber aus nur einem Kristall hergestellt wird, es ausreicht, eine kleine Menge Natrium hinzuzufügen, um die Verteilung der Elemente zu homogenisieren“, sagt Diego Colombara, inzwischen Marie Curie Research Fellow am International Iberian Nanotechnology Laboratory und Projektleiter der Studie. „Das ist wirklich überraschend, denn mehr als 20 Jahre vorangegangener Forschung zeigten durchgängig den entgegengesetzten Effekt bei Absorbern, die aus vielen Kristallen hergestellt sind.“

Die Forscher schließen daraus, dass Natrium eine zweifache Wirkung hat: Es homogenisiert die Elemente in jedem Kristall, aber es verlangsamt die Homogenisierung bei Wechselwirkung zwischen den Körnern. „Dies ermöglicht uns zu überdenken, wie wir Solarzellen herstellen. Diese Erkenntnisse könnten zu künftigen Verbesserungen im Herstellungsprozess führen“, so Dr. Phillip Dale, Leiter der Forschungsgruppe am Laboratory for Energy Materials (LEM) an der Universität Luxemburg und Attract Fellow des FNR. Die Physiker veröffentlichten ihre Forschungsergebnisse in der angesehenen Fachzeitschrift Nature Communications.

Foto © Universität Luxemburg
Illustration 
© Universität Luxemburg

Forschung am LIST: Wie sieht die Zukunft aus? Plasma: Der vierte Aggregatszustand und seine Einsatzmöglichkeiten

Mit Hilfe von Plasma lassen sich Materialien mit besonderen Eigenschaften ausstatten. Was dabei alles möglich ist, erklä...

Forschung am LIST: Wie sieht die Zukunft aus? Das Smartphone von morgen: Nicht nur sehen und hören, sondern auch fühlen

LIST-Materialforscher Emmanuel Defay forscht gemeinsam mit Kollegen an sogenannten piezoelektrische Anwendungen, mit den...

Start-up OCSiAl Graphen-Nanoröhrchen: Ein schwarzes Pulver mischt die Materialwissenschaft auf

Mit Graphen-Nanoröhrchen lassen sich die Eigenschaften unterschiedlichster Materialen extrem verbessern. Das luxemburgis...

Auch in dieser Rubrik

Simon Bulou
Forschung am LIST: Wie sieht die Zukunft aus? Plasma: Der vierte Aggregatszustand und seine Einsatzmöglichkeiten

Mit Hilfe von Plasma lassen sich Materialien mit besonderen Eigenschaften ausstatten. Was dabei alles möglich ist, erklärt LIST-Forscher Simon Bulou.

Emmanuel Defay
Forschung am LIST: Wie sieht die Zukunft aus? Das Smartphone von morgen: Nicht nur sehen und hören, sondern auch fühlen

LIST-Materialforscher Emmanuel Defay forscht gemeinsam mit Kollegen an sogenannten piezoelektrische Anwendungen, mit denen die Handy- und Tablet-Nutzung revolutioniert werden könnte.

OCSiAl Wissenschaftler
Wettbewerb für Forscher Graphen-Nanoröhrchen: Suche nach der besten industriellen Anwendung

Die luxemburgische Start-Up OCSiAl appelliert an Wissenschaftler weltweit sich für die jährlichen internationalen TUBALL Awards einzuschreiben.

Start-up OCSiAl Graphen-Nanoröhrchen: Ein schwarzes Pulver mischt die Materialwissenschaft auf

Mit Graphen-Nanoröhrchen lassen sich die Eigenschaften unterschiedlichster Materialen extrem verbessern. Das luxemburgische Start-up OCSiAl ist auf diesem Gebiet inzwischen Marktführer.