Physikforscher produzieren möglicherweise revolutionäres Material

14.02.14

University of LuxembourgDiesen Artikel drucken
Weltweite Anerkennung für neue Form von künstlichem Graphen.

„Künstliches Graphen“ – eine neue Art ultradünnes Supermaterial – könnte eine Technologierevolution auslösen und zu schnelleren, kleineren und leichteren elektronischen und optischen Geräten führen, wie zum Beispiel noch leistungsfähigeren Photovoltaikzellen, Lasern oder Leuchtdioden (LEDs).

Zum ersten Mal produzierten und analysierten Wissenschaftler künstliches Graphen aus traditionellen Halbleitermaterialien.

Ein Durchbruch von so großer wissenschaftlicher Bedeutung, dass diese Entdeckung kürzlich in einem der weltweit führenden Physikjournalen, Physical Review X, veröffentlicht wurde. Eine Forscherin der Universität Luxemburg spielte eine wichtige Rolle in dieser bahnbrechenden Arbeit.

Was ist Graphen?

Bei Graphen (verwandt mit Graphit) handelt es sich um eine monoatomare Schicht, in der Kohlenstoffatome in Wabenform angeordnet sind. Dieses stabile, biegsame, leitfähige und transparente Material ist von großer wissenschaftlicher und technologischer Bedeutung. Seit seiner erst 2004 gemachten Entdeckung sind Forscher weltweit bemüht, mehr über seine unterschiedlichen Verwendungsmöglichkeiten herauszufinden. Künstlicher Graphen hat dieselbe Wabenstruktur, doch in diesem Fall werden statt Kohlenstoffatomen Nanometer-dicke Halbleiterkristalle verwendet. Durch Veränderung der Größe, Form und chemischen Natur der Nanokristalle können die Eigenschaften des Materials für verschiedene Zwecke optimiert werden.

Internationale Zusammenarbeit

Die Universität Luxemburg ist an vielen grenzübergreifenden, multidisziplinären Forschungsprojekten beteiligt. In diesem Fall arbeitete sie mit dem Institut für Elektronik, Mikroelektronik und Nanotechnologie (IEMN) in Lille (Frankreich), dem Debye Institute for Nanomaterials Science und dem Institut für Theoretische Physik der Universität Utrecht (Niederlande) sowie dem Max-Planck-Institut für Physik komplexer System in Dresden (Deutschland) zusammen.

Dr. Efterpi Kalesaki, Forscherin an der Universität Luxemburg, ist Erstautorin des Artikels in Physical Review X. „Diese selbstassemblierten, wabenförmigen Halbleiter-Nanokristalle sind eine neue Klasse von Systemen mit großem Potenzial“, so Dr. Kalesaki. Prof. Ludger Wirtz, Leiter der Gruppe Theoretische Festkörperphysik an der Universität Luxemburg, fügt hinzu: „Künstliches Graphen erschließt neue Möglichkeiten für eine große Vielfalt von Materialen mit wandelbarer Nano-Geometrie und 'abstimmbaren' elektronischen Eigenschaften.“

Autor: Universität Luxemburg
Foto © Universität Luxemburg

 

Auch in dieser Rubrik

Ein großes Kristall statt tausend kleine: Neue Erkenntnisse in der Solarforschung

05.04.18 Forscher der Uni Luxemburg haben nachgewiesen, dass weitverbreitete Annahmen über die chemischen Prozesse bei Solarzellen unzutreffend sind. > Ganzen Artikel lesen

New LIST spin-off unlocks the secrets of the infinitely small

02.03.18 Luxembourg Ion Optical Nano-Systems sàrl (LION Nano-Systems), the latest spin-off from the Luxembourg Institute of Science and Technology (LIST) has spread ...> Ganzen Artikel lesen

My research in 90 seconds: Mit Dünnschichtsolarzellen Solarenergie für Privatnutzer zugänglicher machen?

22.02.18 Dünnschichtsolarzellen sind eine alternative Art der Photovoltaik. Wie unterscheiden sie sich von herkömmlichen Solarzellen? Und weshalb sind sie so vielver...> Ganzen Artikel lesen

My research in 90 seconds: Outsourcing computational tasks. How can you trust the result?

09.02.18 “Of course, just outsource it to a cloud!” – A common practice for a lot of firms. But is that reliable? Can you trust the result? > Ganzen Artikel lesen

FNR Attract Fellows: Cesar Pascual Garcia entwickelt die nächste Generation medizinischer Sensoren

19.01.18 Sensoren sind auch in der Medizin verbreitet: Der Nanotechnologe Cesar Pascual Garcia will sie noch besser machen. > Ganzen Artikel lesen

Infobox

Weitere Infos

Link zum wissenschaftlichen Artikel: http://prx.aps.org/abstract/PRX/v4/i1/e011010

Ansprechpartner: Dr. Efterpi Kalesaki, e-mail  efterpi.kalesaki@uni.lu, T: +352 46 66 44 6693.

Über die Forschungseinheit „Physics an Materials Science“


Verwandte Themen